
Lunaris’ Scriptables Documentation

Lunaris’ Scriptables Documentation

Contents

1 Overview 4

2 Getting Started 5
2.1 Specifications . 5
2.2 Licensing . 5
2.3 Installation . 5

3 Lunaris’ Scriptables Types 7
3.1 Variables . 7
3.2 Observable Variables . 8
3.3 Collection . 10
3.4 Observable Collection . 12
3.5 Events . 16

3.5.1 Changing Event . 16
3.5.2 Changed Event . 17
3.5.3 Change Event . 18
3.5.4 Collection Changing Event 19
3.5.5 Collection Changed Event 20

3.6 Event Listeners . 21
3.6.1 Event Listener Behaviors 22

3.7 Event Arguments . 22
3.7.1 ValueChangeEventArgs 22
3.7.2 ValueChangingEventArgs 23
3.7.3 ValueChangedEventArgs 23
3.7.4 CollectionChangeEventArgs 24
3.7.5 CollectionChangingEventArgs 24
3.7.6 CollectionChangedEventArgs 25

3.8 References . 26
3.9 Converters . 27
3.10 Actions . 28
3.11 Functions . 29

1

Lunaris’ Scriptables Documentation

3.12 Script Hooks . 30

4 Lunaris’ Scriptables Code Generator 31
4.1 ScriptableObject Generator 31
4.2 Lunaris Scriptable Generator 34
4.3 Scriptable Bulk Creator . 38

5 Settings 41
5.1 Automatic Create Scriptableobjects 41
5.2 Scriptable Asset Path . 41
5.3 Prompt before overwriting files 41
5.4 Prompt before overwriting for all files 42
5.5 Code Generator . 42
5.6 Embed Lunaris Scriptables in Inspector 42
5.7 Embed ScriptableObjects in Inspector 42
5.8 Show Create/Load on Lunaris Scriptables 42
5.9 Show Create/Load on ScriptableObjects 42
5.10 Only Show LunarisScriptableObjects in Bulk Creator 43
5.11 Use Filters for Bulk Creator 43
5.12 Use Lunaris’ Object Picker for abstract/generic scriptables . . 43
5.13 Automatically create scriptable on single match 43
5.14 Curly Bracket Style . 43
5.15 Indent Style . 44
5.16 Indent Amount . 44
5.17 Generator Settings . 44

5.17.1 Paths . 44
5.17.2 Namespaces . 44
5.17.3 Prefixes . 45
5.17.4 Surfixes . 45
5.17.5 Asset Menu Path . 45
5.17.6 Component Menu Path 45

6 Edtitor Extensions 46
6.1 Create and Load Button for Lunaris Scriptable Objects 46
6.2 Embeding Lunaris Scriptable Objects and Scriptable Objects . 47
6.3 Event Listeners and Automatic Listener Callbacks 49

7 Custom Code Generators 54

2

Lunaris’ Scriptables Documentation

8 Future Works 61
8.1 Planning Features . 61
8.2 Known Issues . 61

3

Lunaris’ Scriptables Documentation

1 Overview

Lunaris’ Scriptables is a complete system for scriptable object in unity, that
makes it fast and easy to create and manage scriptable object with little
to no coding experience, as well as making the unity project cleaner and
easier to manage by using an event and data driven architecture, observer
patterns and a Model View Control (MVC) likes architecture. By using these
techniques Lunaris’ Scriptables aims to makes your unity project:

1. Better enforce single responsibility patterns.

2. Reduce dependencies and editor serialization.

3. Less reliable on singletons and global managers.

4. More modular and independent of other system.

5. More and easier testable and debuggable at in-editor runtime.

6. Cleaner and more organized.

7. Faster to create and setup scriptable object and data structures.

Lunaris’ Scripables is partly based on Ryan Hipple’s 2017 Unite talk
”Game Architecture with scriptable objects” (https://www.youtube.
com/watch?v=raQ3iHhE_Kk), and can get you started if you’re com-
pletely new to scriptable object and architectures using scriptable object.
There is also a great blog post here: https://unity.com/how-to/
architect-game-code-scriptable-objects which have a lot of
resources and information.

A copy of the newest verison of this documentation can be found here:
https://www.jacksendary.dk/Documents/LunarisScriptable
sDocumentation.pdf

4

https://www.youtube.com/watch?v=raQ3iHhE_Kk
https://www.youtube.com/watch?v=raQ3iHhE_Kk
https://unity.com/how-to/architect-game-code-scriptable-objects
https://unity.com/how-to/architect-game-code-scriptable-objects
https://www.jacksendary.dk/Documents/LunarisScriptablesDocumentation.pdf
https://www.jacksendary.dk/Documents/LunarisScriptablesDocumentation.pdf

Lunaris’ Scriptables Documentation

2 Getting Started

2.1 Specifications

Lunaris’ Scriptables was made in Unity LTS 2020.3.1 and should work with
all newer versions of the Unity editor. Older versions of unity may also
work but is not officially supported. Bear in mind that individual versions
of the Unity editor may suffer from bugs that may affect Lunaris’ Scriptable
negatively (especially editors). If this should happen please refer to https:
//issuetracker.unity3d.com/ to check if it may be related to unity
and when notify the developer.

All Code exists in namespace ”Lunaris.Scriptables” and sub namespaces
here of.

2.2 Licensing

All redistribution and/or uploading of any or all parts of Lunaris’ Scriptables
in public accessible domains, mediums, repositories or other ways of sharing
is strictly prohibited! The code may be uploaded in private repositories where
all contributors have a valid license. Please also refer to Unity’s Asset Store
Terms of Service and EULA https://unity3d.com/legal/as_terms

2.3 Installation

After purchasing Lunaris’ Scriptables do the following steps to add it to your
project:

1. Download Lunaris’ Scriptables by either:

(a) Go to you ”My assets” or Lunaris’ Scriptables asset store page
and click ”Open in Unity”. A popup may prompt you to ask you

5

https://issuetracker.unity3d.com/
https://issuetracker.unity3d.com/
https://unity3d.com/legal/as_terms

Lunaris’ Scriptables Documentation

to open with unity. Select yes/okay. This will open the package
manager in unity and should have Lunaris’ Scriptables selected.

(b) Inside unity navigate toWindow→Package Manager. In the ”Pack-
age” drop down select ”My Assets” and find Lunaris’ Scriptables
in the list. Using the search bar in the top right if it doesn’t show
us.

2. Click the ”Download” button in the package manager window and wait
for it to complete downloading.

3. When the download is done click the ”Import” button and await the
for unity to open the ”import unity package” window. Make sure ev-
erything is selected and then in this window click the ”Import” button.

4. Unity should now be importing Lunaris’ Scriptables and it should
shortly after be ready to use.

6

Lunaris’ Scriptables Documentation

3 Lunaris’ Scriptables Types

Lunaris’ Scriptables comes out of the box with the posibility to generate the
following types that is listed in this chapter. Each type will be introduced
and briefly explained how they works and what the types can/was meant to
be used for. Most of these types can be changed at run time and remember
values across scenes and entering/exiting playmode. All the types Lunaris’
Scriptable comes with is mostly meant to be base classes for objects/classes
generated by the Lunaris’ Scriptables’ Code Generator which is explained
with examples how works in chapter 4 Lunaris’ Scriptables Code Generator,
as they are generic as theirs basetype and therefore can not by it self be
created as a scriptableobject. All examples in this chapter is presuming the
type have been generated with a string type using the standard out of the
box settings. However the type can be a object and should show up as long
as Unity can serialize the type. If Unity cannot serialize the type, the default
value will be null.

3.1 Variables

Variables is used to store a variable or object of any type. Variables makes
it possible to create a reference to a variable and get or set its value instead
of having to reference entire scripts or objects and changing values in each
of them.

Properties:

Value Gets or sets the current value of the variable object.

7

Lunaris’ Scriptables Documentation

Figure 3.1: The editor of a Variable, in this case a String Variable. Notice
that the value can be both seen and changed in the editor, even in play mode.

3.2 Observable Variables

Observable Variables is like variables used to store a variable or object of any
type, but whenever its value is changed it will trigger an chain of events both
before changing and after the value has changed. With Observable Variables
it is possible to be reactive to changes made to the variable from other source
through events. Note that sub variables of complex objects does not trig-
ger the events when changed, only when the property ”Value” is set/changed.

Properties:

Value Gets or sets the current value of the vari-
able object.

ValueChangedGameEvent Gets the Game Event which invokes after
the value is changed with additional infor-
mation of the new and previous value.

ValueChangeGameEvent Gets the Game Event which invokes after
the value is changed with only the new
value.

ValueChangingGameEvent Gets the Game Event which invokes be-
fore the value is changed with additional
information of the new and previous value.

Events:

8

Lunaris’ Scriptables Documentation

OnValueChanged Event which invokes after the value is
changed with additional information of
the new and previous value. NOTE:
This value can NOT be serialized/shown
in the editor. This event is meant for
coders as an easier alternative to Val-
ueChangedGameEvent.

OnVariableChange Event which invokes after the value is
changed. NOTE: This value can NOT be
serialized/shown in the editor. This event
is meant for coders as an easier alternative
to ValueChangeGameEvent.

OnValueChanging Event which invokes before the value is
changed with additional information of the
new and previous value. NOTE: This
value can NOT be serialized/shown in the
editor. This event is meant for coders
as an easier alternative to ValueChang-
ingGameEvent.

UIValueChangeEvent Event which invokes after the value is
changed. This Event is meant to be used
with observable UI components.

Figure 3.2: The editor of an Observable Variable, in this case a Observable
String Variable. Notice that the value can be both seen and changed in the
editor, as well as the game events, even in play mode.

9

Lunaris’ Scriptables Documentation

3.3 Collection

Collections is used to store, you guessed it! a collection- or multiple vari-
ables of a certain type. Just like variables this makes it possible to reference
a collection of values and get or set each of the values instead of having to
reference entire scripts or objects and changing values in each of them.

Properties:

Count Gets the number of elements contained in
the collection.

Item[Int32] Gets or sets a element in the collection at
the specified index.

Methods:

10

Lunaris’ Scriptables Documentation

Add(T) Adds an object to the end of the collection.
Clear() Removes all elements from the collection.
Contains(T) Determines whether an element is in the

collection.
CopyTo(T) Copies a range of elements from the collec-

tion to a compatible one-dimensional ar-
ray, starting at the beginning of the target
array.

CopyTo(T, Int32) Copies a range of elements from the collec-
tion to a compatible one-dimensional ar-
ray, starting at the specified index of the
target array.

Dequeue() Removes and returns the object at the be-
ginning of the collection.

Enqueue(T) Adds an object to the end of the collection.
GetEnumerator() Returns an enumerator that iterates

through the collection.
IndexOf(T) Searches for the specified object and re-

turns the zero-based index of the first oc-
currence within the collection.

Insert() Inserts an element into the collection at
the specified index.

Pop() Removes and returns the last element of
the collection.

Push(T) Adds an object to the end of the collection.
Remove(T) Removes the first occurrence of a specific

object from the collection.
RemoveAt(Int32) Removes the element at the specified index

of the collection.

11

Lunaris’ Scriptables Documentation

Figure 3.3: The editor of a collection, in this case a String Collection. Notice
that values can be added and removes and each value can be edited individ-
ually in the editor, even in play mode.

3.4 Observable Collection

Observable Collections is similar to a normal collection, but trigger events
whenever the collection or a value in it is changing or changed. Similar to
Observable Variables, this makes it is possible to be reactive to changes, made
to the collection and variables, from other source through events. Note that
sub variables of complex objects does not trigger the events when changed,
only when the property ”Value” is set/changed.

Properties:

12

Lunaris’ Scriptables Documentation

Count Gets the number of elements contained in
the collection.

Item[Int32] Gets or sets a element in the collection at
the specified index.

CollectionChanged-
GameEvent

Gets the Game Event which invokes after
the collection or a value in it changed with
additional information of the new and pre-
vious value, as well as affacted collection,
index and how the collection/value was
changed.

CollectionChanging-
GameEvent

Gets the Game Event which invokes before
the collection or a value in it changed with
additional information of the new and pre-
vious value, as well as affacted collection,
index and how the collection/value was
changed.

Methods:

13

Lunaris’ Scriptables Documentation

Add(T) Adds an object to the end of the collection.
Clear() Removes all elements from the collection.
Contains(T) Determines whether an element is in the

collection.
CopyTo(T) Copies a range of elements from the collec-

tion to a compatible one-dimensional ar-
ray, starting at the beginning of the target
array.

CopyTo(T, Int32) Copies a range of elements from the collec-
tion to a compatible one-dimensional ar-
ray, starting at the specified index of the
target array.

Dequeue() Removes and returns the object at the be-
ginning of the collection.

Enqueue(T) Adds an object to the end of the collection.
GetEnumerator() Returns an enumerator that iterates

through the collection.
IndexOf(T) Searches for the specified object and re-

turns the zero-based index of the first oc-
currence within the collection.

Insert() Inserts an element into the collection at
the specified index.

Pop() Removes and returns the last element of
the collection.

Push(T) Adds an object to the end of the collection.
Remove(T) Removes the first occurrence of a specific

object from the collection.
RemoveAt(Int32) Removes the element at the specified index

of the collection.

Events:

14

Lunaris’ Scriptables Documentation

OnCollectionChanged Event which invokes after the collection or
a value in it changed with additional infor-
mation of the new and previous value, as
well as affacted collection, index and how
the collection/value was changed. NOTE:
This value can NOT be serialized/shown
in the editor. This event is meant for
coders as an easier alternative to Val-
ueChangedGameEvent.

OnCollectionChanging Event which invokes before the collec-
tion or a value in it changed with addi-
tional information of the new and previ-
ous value, as well as affacted collection,
index and how the collection/value was
changed. NOTE: This value can NOT be
serialized/shown in the editor. This event
is meant for coders as an easier alternative
to ValueChangingGameEvent.

UIValueChangeEvent Event which invokes after the value is
changed. This Event is meant to be used
with observable UI components.

Figure 3.4: The editor of an observable collection, in this case an Observable
String Collection. Notice that values can be added and removes and each
value can be edited individually in the editor, as well as the game events,
even in play mode.

15

Lunaris’ Scriptables Documentation

3.5 Events

Events is based on an observer design pattern that enables a subscriber to reg-
ister and receive notifications from a provider, when an event is invoked/ex-
ecuted. It is suitable for any scenario that requires push-based notification.
Events is created as scriptableobject assets and can be attached to an event
listener which may have multiple registered subscribers. Events comes in 5
different kinds; Changing, Changed, Change, CollectionChanging and Col-
lectionChanged. Each event can easily be executed from the editor with a
push of a button, with data corresponding to it, as long as that data is se-
rializable by unity. This makes it easy to test the events in the editor and
while in play mode.

3.5.1 Changing Event

Changing events is meant to be an events that triggers before a change is
made to a value, and is currently used in observable variables to notify lis-
teners that a change is about to happen, and adds arguments about what
the values is currently is and what it is about to become.

Methods:

Invoke(T) Executes all the listening event listeners
”OnEventRaised” method which then ex-
ecutes to run the response method(s).

RegisterListener(
IGameEventListener<
ValueChangingEventArgs<
T>>)

Adds an event listener to the event.

UnregisterListener(
IGameEventListener<
ValueChangingEventArgs<
T>>)

Removes an event listener to the event.

16

Lunaris’ Scriptables Documentation

Figure 3.5: The editor of Changing Event, in this case an String Changing
Event. Notice that the events can be executed by clicking the ”Execute
Events” button and the argument parameters can be set above the button
to easily test the event. This may only work while in play mode for certain
api calls.

Important: The values/data entered in the event editors is not persis-
tent and is lost when the object is deselected.

3.5.2 Changed Event

Changed events is meant to be an events that triggers after a change is made
to a value, and is currently used in observable variables to notify listeners
that a change has been made to its value, and adds arguments about what
the values were before and after the change.

Methods:

Invoke(T) Executes all the listening event listeners
”OnEventRaised” method which then ex-
ecutes to run the target method(s).

RegisterListener(
IGameEventListener<
ValueChangedEventArgs<
T>>)

Adds an event listener to the event.

UnregisterListener(
IGameEventListener<
ValueChangedEventArgs<
T>>)

Removes an event listener to the event.

17

Lunaris’ Scriptables Documentation

Figure 3.6: The editor of Changed Event, in this case an String Changed
Event. Notice that the events can be executed by clicking the ”Execute
Events” button and the argument parameters can be set above the button
to easily test the event. This may only work while in play mode for certain
api calls.

3.5.3 Change Event

Change Events is a simplified event that is meant to be used to notify listen-
ers about a change to a value, but only notifies listeners with the new value
as a parameter. Change event is the last event to be triggered in observable
variables.

Methods:

Invoke(T) Executes all the listening event listeners
”OnEventRaised” method which then ex-
ecutes to run the target method(s).

RegisterListener(
IGameEventListener<T>)

Adds an event listener to the event.

UnregisterListener(
IGameEventListener<T>)

Removes an event listener to the event.

18

Lunaris’ Scriptables Documentation

Figure 3.7: The editor of Change Event, in this case an String Change Event.
Notice that the events can be executed by clicking the ”Execute Events”
button and the argument parameters can be set above the button to easily
test the event. This may only work while in play mode for certain api calls.

3.5.4 Collection Changing Event

Collection Changing events is meant to be an events that triggers before a
change is made to a collection, and is currently used in observable collections
to notify listeners that a change will be made to the collection, and adds
arguments about what the values were before and after the change, at what
index this change is going to happen, the collection it is happening to and
what sort of change is happening to the collection.

Methods:

Invoke(T) Executes all the listening event listeners
”OnEventRaised” method which then ex-
ecutes to run the target method(s).

RegisterListener(
IGameEventListener<
CollectionChangingEventArgs<
T>>)

Adds an event listener to the event.

UnregisterListener(
IGameEventListener<
CollectionChangingEventArgs<
T>>)

Removes an event listener to the event.

19

Lunaris’ Scriptables Documentation

Figure 3.8: The editor of Collection Changing Event, in this case an String
Collection Changing Event. Notice that the events can be executed by click-
ing the ”Execute Events” button and the argument parameters can be set
above the button to easily test the event. This may only work while in play
mode for certain api calls.

3.5.5 Collection Changed Event

Collection Changed events is meant to be an events that triggers after a
change has been made to a collection, and is currently used in observable
collections to notify listeners that a change has been made to the collection,
and adds arguments about what the values were before and after the change,
at what index this change has happened, the collection it is happening to
and what sort of change has happened to the collection.

Methods:

Invoke(T) Executes all the listening event listeners
”OnEventRaised” method which then ex-
ecutes to run the target method(s).

RegisterListener(
IGameEventListener<
CollectionChangedEventArgs<
T>>)

Adds an event listener to the event.

UnregisterListener(
IGameEventListener<
CollectionChangedEventArgs<
T>>)

Removes an event listener to the event.

20

Lunaris’ Scriptables Documentation

Figure 3.9: The editor of Collection Changed Event, in this case an String
Collection Changed Event. Notice that the events can be executed by clicking
the ”Execute Events” button and the argument parameters can be set above
the button to easily test the event. This may only work while in play mode
for certain api calls.

3.6 Event Listeners

Event listeners is used for listening/catching event notifications when they
are invoken. An evnet listener need to be of the same generic type as the
event it need to listen for. Event listeners will run all response methods in
order when the registered game event is invoked. When using event listeners
in custom scripts you will need to call RegisterListener for it to be able to
receive the events, and UnregisterListener when you want to stop it from
receiving events.

Properties:

GameEvent Gets the GameEvent that is being listened
to.

Response Gets the UnityEvent that is the re-
sponse(s) to the GameEvent.

Methods:

21

Lunaris’ Scriptables Documentation

OnEventRaised(T) Invokes the listening Response’s
method(s).

RegisterListener() Register the GameEvent to the EventLis-
tener. This is done automatically on
Event Listener Behaviors OnEnable.

UnregisterListener() Unregister the GameEvent from the
EventListener. This is done automatically
on Event Listener Behaviors OnDisable.

Figure 3.10: The editor of an Event Listener and an Event Listener behavior,
in this case an String Event Listener and String Event Listener Behavior.

3.6.1 Event Listener Behaviors

Event Listener Behaviors is very similar to the plain Event Listener except
it wraps the listener in a monobehavior that automatically calls RegisterLis-
tener and UnregisterListener when ever the gameobject/script is enabled/dis-
abled.

3.7 Event Arguments

Event Arguments is generic classes that contains data related to their corre-
sponding events. This data is sent as a parameter to the listening respons-
es/events methods when an event is invoked. Each of the event arguments
has their members displayed and explained in the following sections.

3.7.1 ValueChangeEventArgs

Constructors:

22

Lunaris’ Scriptables Documentation

ValueChangeEventArgs
<T>(T, T)

Initializes a new instance of Val-
ueChangeEventArgs with the new
and old values.

Properties:

NewValue Gets or Sets the new value variable.
OldValue Gets or Sets the old value variable.

3.7.2 ValueChangingEventArgs

Constructors:

ValueChangingEventArgs
<T>(T, T)

Initializes a new instance of Val-
ueChangingEventArgs with the new
and old values.

Properties:

NewValue Gets or Sets the new value variable. (In-
herited from ValueChangeEventArgs)

OldValue Gets or Sets the old value variable. (In-
herited from ValueChangeEventArgs)

3.7.3 ValueChangedEventArgs

Constructors:

ValueChangedEventArgs
<T>(T, T)

Initializes a new instance of Val-
ueChangedEventArgs with the new
and old values.

Properties:

NewValue Gets or Sets the new value variable. (In-
herited from ValueChangeEventArgs)

OldValue Gets or Sets the old value variable. (In-
herited from ValueChangeEventArgs)

23

Lunaris’ Scriptables Documentation

3.7.4 CollectionChangeEventArgs

Constructors:

CollectionChangeEventArgs
<T>(T, T, ObservableCollec-
tion <T>, long, ChangeType)

Initializes a new instance of Collection-
ChangeEventArgs with the new and old
values.

Properties:

ChangeType Gets or Sets the changetype which indi-
cates how the collection was changed. (In-
herited from ValueChangeEventArgs)

Collection Gets or Sets the collection which
was changed. (Inherited from Val-
ueChangeEventArgs)

Index Gets or Sets the index of where the
change happened. (Inherited from Val-
ueChangeEventArgs)

NewValue Gets or Sets the old value variable. (In-
herited from ValueChangeEventArgs)

OldValue Gets or Sets the new value variable. (In-
herited from ValueChangeEventArgs)

3.7.5 CollectionChangingEventArgs

Constructors:

CollectionChangingEventArgs
<T>(T, T, ObservableCollec-
tion< T>, long, ChangeType)

Initializes a new instance of Collection-
ChangingEventArgs with the new and old
values.

Properties:

24

Lunaris’ Scriptables Documentation

ChangeType Gets or Sets the changetype which indi-
cates how the collection was changed. (In-
herited from CollectionChangeEventArgs)

Collection Gets or Sets the collection which was
changed. (Inherited from Collection-
ChangeEventArgs)

Index Gets or Sets the index of where the change
happened. (Inherited from Collection-
ChangeEventArgs)

NewValue Gets or Sets the old value variable. (In-
herited from ValueChangeEventArgs)

OldValue Gets or Sets the new value variable. (In-
herited from ValueChangeEventArgs)

3.7.6 CollectionChangedEventArgs

Constructors:

CollectionChangedEventArgs<
T>(T, T, ObservableCollec-
tion <T>, long, ChangeType)

Initializes a new instance of Collection-
ChangedEventArgs with the new and old
values.

Properties:

ChangeType Gets or Sets the changetype which indi-
cates how the collection was changed. (In-
herited from CollectionChangeEventArgs)

Collection Gets or Sets the collection which was
changed. (Inherited from Collection-
ChangeEventArgs)

Index Gets or Sets the index of where the change
happened. (Inherited from Collection-
ChangeEventArgs)

NewValue Gets or Sets the old value variable. (In-
herited from ValueChangeEventArgs)

OldValue Gets or Sets the new value variable. (In-
herited from ValueChangeEventArgs)

25

Lunaris’ Scriptables Documentation

3.8 References

References, or ScriptableReferences is used to one of any specific value, script-
able variables, observable variables or converters. This makes is easier to
create code that easier can meet demands of designers working in the engine,
but also eliminate uncertaincy about what type to use at different times.

Constructors:

ScriptableReference<T>() Instantiate a new instance of Script-
ableReference which can be used to hold a
value coming from different sources.

Fields:

referenceType Determines the type of the variable the
property Value should return.

value A value or object of type T.
variable A ScriptableVariable of type T.
observableVariable A ScriptableObservableVariable of type T.
converter A ValueConverter which convert to type

T.
function A LunarisFunction of type T.

Properties:

Value Gets or sets the value of the reference de-
pending on the field referenceType.

Events:

UIValueChangeEvent Event which invokes after the value is
changed. This Event is meant to be used
with observable UI components.

26

Lunaris’ Scriptables Documentation

Figure 3.11: The editor/property drawer for ScriptableReferences, in this
case a StringReference. Currently it is showing an input field which accepts
any string input, however clicking the button with the three dots will allow
you to change between value, scriptable variables, observable variables or
converters.

3.9 Converters

Converters is used to convert from one type to another. Converters makes
it possible convert values, objects, scriptable variables, observable variables
and even other converters into another type. Lunaris Scriptables’ comes with
the a few example converters, but most converters will need to be created
and methods implemented to suit your specific need to convert data correctly.

Constructors:

ValueConverter<T, F>() Class which converts a from type F to T
or back.

Fields:

value The from value which should be converted.

Properties:

Value Gets the converted value of the converter,
or sets the value of the converter by con-
verting the set value.

Methods:

Convert(T) Convert the value from type F to type T,
and returns the converted value.

ConvertBack(F) Convert the value from type T to type F,
and returns the converted value.

27

Lunaris’ Scriptables Documentation

Figure 3.12: The editor of a converter, in this case a String to Float converter.
Notice that the converted value can be seen in the bottom of the editor to
fast check its behavior. A error help box will be displayed if the converter
can not convert a value or an error occuor trying to convert the value.

Important: Please note that converters that have circular references will
cause stackoverflows and potentially crash the unity editor which may result
in data loss. If unity saves a change where the crash persist, please use the
debug inspector/editor to remove the reference coursing issues.

3.10 Actions

Actions, or ”LunarisAction” is meant to be used to make small methods with
specific behavior(s) which then can be invoked by other scripts. Most actions
will need to be created and methods implemented to suit your specific needs.

Constructors:

LunarisAction() Abstract class of LunarisAction without
type parameter.

LunarisAction<T>() Abstract class of LunarisAction with one
type parameter.

LunarisAction<T1, T2>() Abstract class of LunarisAction with two
type parameter.

LunarisAction<T1, T2, T3>() Abstract class of LunarisAction with three
type parameter.

LunarisAction<T1, T2, T3,
T4>()

Abstract class of LunarisAction with four
type parameter.

Methods:

28

Lunaris’ Scriptables Documentation

Invoke() Invokes the method of the action.
Invoke(T) Invokes the method of the action with one

parameter.
Invoke(T1, T2) Invokes the method of the action with two

parameters.
Invoke(T1, T2, T3) Invokes the method of the action with

three parameters.
Invoke(T1, T2, T3, T4) Invokes the method of the action with four

parameters.

Figure 3.13: The editor of an action, in this case an action taking 4 type
parameters; string, float, int and a gameobject. The parameters will differ
depending on your specific implementation of an action.

3.11 Functions

Functions, or ”LunarisFunction” is meant to be used to make small methods
with specific behavior(s) which then can be invoked by other scripts. Most
functions will need to be created and methods implemented to suit your spe-
cific needs. Unlike actions, functions always have a return type.

Constructors:

29

Lunaris’ Scriptables Documentation

LunarisFunction<TResult>() Abstract class of LunarisFunction without
type parameter.

LunarisFunction<T,
TResult>()

Abstract class of LunarisFunction with
one type parameter.

LunarisFunction<T1, T2,
TResult>()

Abstract class of LunarisFunction with
two type parameter.

LunarisFunction<T1, T2, T3,
TResult>()

Abstract class of LunarisFunction with
three type parameter.

LunarisFunction<T1, T2, T3,
T4, TResult>()

Abstract class of LunarisFunction with
four type parameter.

Methods:

Invoke() Invokes the method of the function and
return a value of type TResult.

Invoke(T) Invokes the method of the function with
one parameter and return a value of type
TResult.

Invoke(T1, T2) Invokes the method of the function with
two parameters and return a value of type
TResult.

Invoke(T1, T2, T3) Invokes the method of the function with
three parameters and return a value of
type TResult.

Invoke(T1, T2, T3, T4) Invokes the method of the function with
four parameters and return a value of type
TResult.

3.12 Script Hooks

Script Hooks is used to avoid writing boilerplate code to raise Atoms Events
or invoke actions from Unity’s MonoBehavior functions. All MonoBehavior
functions can be found here: https://docs.unity3d.com/ScriptR
eference/MonoBehaviour.html and Lunaris’ Scriptables comes with
some of the most commonly used functions.

30

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

Lunaris’ Scriptables Documentation

4 Lunaris’ Scriptables Code
Generator

After importing Lunaris’ Scriptables, a new option inside the Tools menu
called ”Lunaris” will show up. Navigating to this item will reveal a menu
with an item called ”Scriptables Code Generator”. Clicking this will open
up the Lunaris generator window with the posibility to fast and easy create
LunarisScriptableObjects without writing a line of code. Please note that
refreshing/importing assets will cause the generator window reload and reset
all data.

Important: Whenever we are browsing/searching/choosing for primitive
types we must use the .NET typenames, however the end result will be the
primitive types of those. For more information please refer to this link:
https://docs.microsoft.com/en-us/dotnet/csharp/lang
uage-reference/builtin-types/built-in-types. Support for
search of primitive names and nullable types may be released in the future.

Before using the generators for our project we may want to change the
settings of Lunaris’ Scriptables to best fit our use case. All settings and what
they do is briefly explained in chapter: 5 Settings

4.1 ScriptableObject Generator

When opening Lunaris’ Scriptables’ Code generator, we are presented with
the window shown in figure 4.1. This section we will step by step see how the
”ScriptableObject Generator” fast and easy can create ScriptableObjects.

In this example we want to make a simple scriptableobject called ”Play-
erData” which can hold two variables: Name and Health.

First enter the name ”PlayerData” into the text field under the label
”Scriptableobject Name”. This will be the name of both the class and the
generated file.

Next we also write ”PlayerData” in the textfield under the label ”Create

31

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/built-in-types

Lunaris’ Scriptables Documentation

Asset Menu Path”. This is the path where we can create the object asset from
the asset menu. For more information please see https://docs.unity
3d.com/ScriptReference/CreateAssetMenuAttribute.html.

Now click the ”Add Variable” button twice. We should now have a win-
dow very similar to figure 4.2.

Figure 4.1: The ScriptableObject
Generator window upon opening or
after clicking reset.

Figure 4.2: The ScriptableObject
Generator window after adding name
path and fields.

To specify the variable types first click the button with the text ”None”
under the label ”Field Type”. This will show a dropdown window, as seen
on figure 4.3, in this window it is possible to search and select a target type
for a field. Select ”System.String” and ”System.Single” in the two added
variables, and then name them ” name” and ” health”. We should now have
a window which is similar to the window in figure 4.4.

Notice that in the bottom of the window is an error message if there is
something which haven’t been filled out correctly. In this case please refer
to the message and fix the errors. The Create button should appear as soon
as all information is filled in.

It is possible to remove single variables by clicking the ”Remove” button
to the right in the row, and we can completely reset the window back to its
state shown in figure 4.1 by clicking the ”Reset” button in the top besides
the ”Add Variables” button.

32

https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html

Lunaris’ Scriptables Documentation

Figure 4.3: The ScriptableObject
Generator window with type selector
open searching for ”string”.

Figure 4.4: The ScriptableObject
Generator window with all info filled
in and ready to generate.

When ready, we can create the object by clicking the button in the bottom
of the window called ”Create {Scriptableobject Name} Scriptableobject” to
create the code/file with the information typed in the Scriptable Generator
tab. If we followed along the steps in this section we should now have a new
file create at the path specified in the Lunaris’ Scriptables’ settings, which by
default is ”Assets/Generated/LunarisScriptables/ScriptableObjects”. Please
refer to chapter 5 Referenceschapter:settings for further detail. This file
should look very similar to the code in listing 4.1.

1 using System ;
2 using UnityEngine ;
3 namespace Lunar is . S c r i p t ab l e s . S c r i p t ab l eOb j e c t s
4 {
5 [CreateAssetMenu (menuName=”PlayerData”)]
6 public class PlayerData : Lunar i sSc r ip tab l eOb j ec t
7 {
8 [S e r i a l i z e F i e l d ()]
9 public string name ;
10 [S e r i a l i z e F i e l d ()]
11 public f loat hea l th ;
12 }

33

Lunaris’ Scriptables Documentation

13 }

Listing 4.1: The generated code after clicking the ”Create PlayerData
scriptableobject” button shown in the bottom of figure 4.4

Important: Please note that the generators DOES NOT remove illegal
characters from the files or class name such as dot (.) comma (,) question
marks (?) or curly brackets ({}), but may instead throw errors, or be unable
to compile the newly created class.

Important: Please note that when generating files with the same name
as an already existing class may cause ”error CS0101: The namespace ’names-
pace’ already contains a definition for ’name’”. If this happen you will need
to delete or rename one of the generated classes.

Important: Please note that when generating files with the same path
of an already existing file with the same name it will be overridden.

4.2 Lunaris Scriptable Generator

In the top of the Lunaris’ Scriptables’ generator window is a tabbed menu
with the name ”Lunaris Scriptable Generator”. Clicking this tab menu item
will show the window in figure 4.1. This tool makes it possible to make
specialized variables, events, collections and eventlisteners. Clicking the add
button twice will add two objects to the windows as shown in figure 4.6. As
can be seen in figure 4.6 some options in grayed out. This is by design, as
some generated items depend on the existence of others to not cause scripting
errors.

34

Lunaris’ Scriptables Documentation

Figure 4.5: The Lunaris Scriptable
Generator window upon opening or
after clicking reset.

Figure 4.6: The Lunaris Scriptable
Generator window after adding two
types.

Next click the none buttons for the two types. A dropdown should ap-
pear as seen in figure 4.7. Choose ”System.String” for the first item and
”UnityEngine.Vector3” for the second item.

Now lets presume that we do not need collection types for the Vector3
type, in this case we will simply uncheck Collection, Observable Collection,
Collection Event, Collection Event Listeners and Collection Event Listeners
Behavior. This should leave us with a window very similar to the window in
figure 4.8

It is possible to remove single types by clicking the ”Remove” button
to the right in the top right of each box, and we can completely reset the
window back to its state shown in figure 4.5 by clicking the ”Reset” button
in the top besides the ”Add” button.

35

Lunaris’ Scriptables Documentation

Figure 4.7: The Lunaris Scriptable
Generator window with the type se-
lector open and searching for ”vec-
tor3”.

Figure 4.8: The Lunaris Scriptable
Generator window with all informa-
tion entered and some types dese-
lected for the Vector3 type.

Lastly we click the ”Generate files for X type(s)” in the bottom of the
window. This should generate the files for the type selected and we should
now have all the files shown in 4.9

36

Lunaris’ Scriptables Documentation

Figure 4.9: The files generated as a result of clicking the ”Generate files
for X Type(s)” in the Lunaris Scriptable Generator window. Note how no
collections have been created for the Vector3 type.

Important: Please note that the generators DOES NOT remove illegal
characters from the files or class name such as dot (.) comma (,) question
marks (?) or curly brackets ({}), but may instead throw errors, or be unable
to compile the newly created class.

Important: Please note that when generating files with the same name
as an already existing class may cause ”error CS0101: The namespace ’names-

37

Lunaris’ Scriptables Documentation

pace’ already contains a definition for ’name’”. If this happen you will need
to delete or rename one of the generated classes.

Important: Please note that when generating files with the same path
of an already existing file with the same name it will be overridden.

4.3 Scriptable Bulk Creator

The last past of the Lunaris’ Scriptables code generator is the Scriptable
Bulk Creator. In the top click the ”Scriptable Bulk Creator” tab menu to
access the tool and you should be presented with a window similar to the one
in figure 4.10. This tool makes it possible to fast create multiple scriptable
object assets from the comfort of a single place.

To get started and to follow this guide click the ”Add ScriptableObject”
button in the top twice. This should now have added two rows with a type
and a name column and should be similar to figure 4.11.

Figure 4.10: The Scriptable Bulk Cre-
ator window upon opening or after
clicking reset.

Figure 4.11: The Scriptable Bulk Cre-
ator window after adding two types.

Next click the none buttons for the two types. A dropdown should appear
as seen in figure 4.12. If you’ve followed along the guides in both the section
4.1 ScriptableObject Generator and 4.2 Lunaris Scriptable Generator you
should now in the dropdown menu be able to see ”Lunaris.Scriptables.ScriptableObjects.PlayerData”

38

Lunaris’ Scriptables Documentation

and ”Lunaris.Scriptables.Variables.Vector3Variable” in the type column. Next
enter ”Player1Data” and ”RespawnLocation” in the name columns. This
should leave us with a window very similar to the one in figure 4.13.

Note that by default only scriptableobjects inheriting from ”LunarisS-
criptableObject” is displayed in the dropdown menu. This can be changed
in settings, please ref to chapter 5 Settings for an overview over all settings,
and the sections 5.10 Only Show LunarisScriptableObjects in Bulk Creator
and 5.11 Use Filters for Bulk Creator for settings affecting the Scriptable
Bulk Creator.

It is possible to remove single variables by clicking the ”Remove” button
to the right in the row, and we can completely reset the window back to its
state shown in figure 4.10 by clicking the ”Reset” button in the top besides
the ”Add Variables” button.

Figure 4.12 Figure 4.13

We can now create our scriptableobjects assets by clicking the ”Create X
scriptableobject asset(s)”, which should create the files shown in figure 4.14.

39

Lunaris’ Scriptables Documentation

Figure 4.14

Important: Please note that the generators DOES NOT remove illegal
characters from the file names such as comma (,) question marks (?) or curly
brackets ({}), but may instead throw errors.

Important: Please note that when generating scriptableobject assets
with the same path of an already existing file with the same name it will be
overridden.

40

Lunaris’ Scriptables Documentation

5 Settings

Lunaris’ Scriptables come with multiple settings to customize the editors
and usage to better suit individuals need. All settings are available in
”Edit→Project Settings...” and then in the settings window navigate to
”Lunaris→Scriptables”.

5.1 Automatic Create Scriptableobjects

When on ScriptableObjects is automatically created when using the ”Cre-
ate” button in the inspector of a Lunaris’ Scriptables (Variables, Observabl-
eVariables, Events, Collections and ObservableCollections). If off the user is
presented with a save file dialog. Default this option is on.

5.2 Scriptable Asset Path

This option is only vissible when ”Automatic Create Scriptableobjects” is
on. This setting is a string with a relative path where auto assets created
from the inspector is put. Default value is ”Assets/ScriptableObjectAsset-
s/Generated”.

5.3 Prompt before overwriting files

When on a dialog popup will be displayed asking if you want to overwrite
existing files with the same name of the ones being created. This dialog is
only shown once and the choice is then reflected for all the files. Default this
option is on.

41

Lunaris’ Scriptables Documentation

5.4 Prompt before overwriting for all files

This option is only vissible when ”Prompt before overwriting files” is on.
When on a dialog popup will be displayed for every file already existing with
the same name of one being created, asking if you want to overwrite. Default
this option is on.

5.5 Code Generator

A Reference to a code generator asset which Lunaris’ scriptables is using
to create code. The default reference is located at ”Assets/Lunaris/Scripta-
bles/Generator”.

5.6 Embed Lunaris Scriptables in Inspector

If on, all objects inheriting from LunarisScriptableObject has its editor shown
in the inspector such that it can be edited on the referencing script rather
than needed to be selected. Default this option is on.

5.7 Embed ScriptableObjects in Inspector

This option is only vissible when ”Embed Lunaris Scriptables in Inspector”
is on. If on, all objects inheriting from ScriptableObject has its editor shown
in the inspector such that it can be edited on the referencing script rather
than selecting the scriptable object asset. Default this option is off.

5.8 Show Create/Load on Lunaris Scripta-

bles

If on, all objects inheriting from LunarisScriptableObject will display a create
and if possible a load button besides its property shown in the inspector.
Default this option is on.

5.9 Show Create/Load on ScriptableObjects

This option is only vissible when ”Show Create/Load on Lunaris Scriptables”
is on. If on, all objects inheriting from ScriptableObject will display a create

42

Lunaris’ Scriptables Documentation

and if possible a load button besides its property shown in the inspector.
Default this option is off.

5.10 Only Show LunarisScriptableObjects in

Bulk Creator

If on, Only objects inheriting from LunarisScriptableObject is shown in the
Scriptable bulk creator. Default this option is on.

5.11 Use Filters for Bulk Creator

This option is only vissible when ”Only Show LunarisScriptableObjects in
Bulk Creator” is off. When this option is on most/all built-in objects inherit-
ing from ScriptableObject is filtered out of the bulk creator allowing only user
created types to show up. Default this option is on, but is ignored/hidden
when ”Only Show LunarisScriptableObjects in Bulk Creator” is on.

5.12 Use Lunaris’ Object Picker for abstrac-

t/generic scriptables

This option indicate whether the property drawers of abstract/generic script-
ables should open unity’s built-inobject picker (off), or a custom made one
that better support generic types and shows derived types of the fields (on).
This option is by default on.

5.13 Automatically create scriptable on sin-

gle match

When this option is on, scriptableobjects will automatically be created if it
is the only class matching the field type when clicking the create button. If
the option is off a dropdown is always shown.

5.14 Curly Bracket Style

This option indicate whether the code generator should place curly brackets
on a new line following .net/Allman standards or on the same line following

43

Lunaris’ Scriptables Documentation

K&R standards. Default value is new line.

5.15 Indent Style

This option indicate how the code generator should indent code, using spaces
or tabs. Default value is spaces.

5.16 Indent Amount

This option is only vissible when ”Indent Style” is set to spaces. This option
incidate how many spaces the code generator should indent code. Default
value is 4.

5.17 Generator Settings

The following settings are specific for how code is generated, styles and nam-
ing conventions of output files created. Most of these settings are used with
different variable across the different types that can be generated eg. ”Vari-
able Path” which indicate this is the path for variables specific.

5.17.1 Paths

Paths is a relative path to a folder/directory which will be the output path
for the generated files. Please note that on some devices and operating sys-
tems you may need to have administrator privileges for the generators to be
allowed to create folders. By default all paths has the value ”Assets/Gen-
erated/Lunaris/Scriptables/{BaseType Name}” where ”{BaseType Name}”
could be ”variables” for the variable type.

5.17.2 Namespaces

Namespaces lets you specify under what namespace different types are gener-
ated. By default all namespaces has the value ”Lunaris.Scriptables.{BaseType
Name}” where ”{BaseType Name}” could be ”variables” for the variable
type.

44

Lunaris’ Scriptables Documentation

5.17.3 Prefixes

Prefixes is used to add characters/text in front of the generated classes and
files. Per standard the generated files and classes will have the following
names as output {Perfix}{TypeName}{Surfix}. Eg. an observablevariable
of type string would be called ”ObservableStringVariable”. Please note that
the generators DOES NOT remove illegal characters from the files or class
name such as dot (.) comma (,) question marks (?) or curly brackets ({}),
but instead throw errors. For standard values please refer to the settings
windows.

5.17.4 Surfixes

Surfixes is used to add characters/text in behind of the generated classes
and files. Per standard the generated files and classes will have the following
names as output {Perfix}{TypeName}{Surfix}. Eg. an observablevariable
of type string would be called ”ObservableStringVariable”. Please note that
the generators DOES NOT remove illegal characters from the files or class
name such as dot (.) comma (,) question marks (?) or curly brackets ({}),
but instead throw errors. For standard values please refer to the settings
windows.

5.17.5 Asset Menu Path

Asset menu path is a path to where the scriptableobject will be in the Assets
menu/right click menu. For more information please see https://do
cs.unity3d.com/ScriptReference/CreateAssetMenuAttr
ibute.html. By default all asset menu paths has the value ”Lunaris
Scriptables/{BaseTypeName}.

5.17.6 Component Menu Path

Component menu path is a path to where monobehaviors will be in the
add component menu. For more information please see https://do
cs.unity3d.com/ScriptReference/AddComponentMenu.ht
ml. By default all component menu paths has the value ”Lunaris Scripta-
bles/{BaseTypeName}.

45

https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html
https://docs.unity3d.com/ScriptReference/AddComponentMenu.html
https://docs.unity3d.com/ScriptReference/AddComponentMenu.html
https://docs.unity3d.com/ScriptReference/AddComponentMenu.html

Lunaris’ Scriptables Documentation

6 Edtitor Extensions

With Lunaris’ Scriptables comes some additions to the unity editor. These
additions will be introduced and explained in this chapter. All examples
shown in the following sections is using scripts/data created from chapter
4.2 Lunaris Scriptable Generator.

6.1 Create and Load Button for Lunaris Script-

able Objects

The first thing that you may notice is that all references to Lunaris’ Script-
ables in script will now show a create or a create and a load button next
to them if the setting 5.8 Show Create/Load on Lunaris Scriptables is on.
Further more these buttons will also be present on normal scriptableobecjts
if the setting 5.8 Show Create/Load on Lunaris Scriptables is on.

The following example is presuming that the code in listing 6.1 is added
to a monobehavior that is attached to a gameobject or a scriptableobject.

1 [S e r i a l i z e F i e l d]
2 PlayerData playerData ;

Listing 6.1: The code lines that is used in the following examples for
creating/loading assets.

Upon adding the variable to a script it should be visible in the inspector
like other variables, however it should have a create button to the right like
shown in Figure 6.1.

Figure 6.1: The editor of a LunarisScriptableObject when adding the code
in listing 6.1 to a monobehavior that is attached to a gameobject or a script-
ableobject.

46

Lunaris’ Scriptables Documentation

Clicking the create button will automatically create a scriptableobject as-
set with the same name as the variable/property name (or the variable/prop-
erty name of the event listener), or you will see save file dialog depending on
your settings. The newly created asset will be saved to the path specified in
the Lunaris’ Scriptables settings or in the save dialog, and automatically be
assigned to the property as can be seen in Figure 6.2.

Figure 6.2: The editor of a LunarisScriptableObject after clicking the ”Cre-
ate” button or ”load” button, if the load button is available.

When ever a variable/property with a name and type matching an ex-
isting scriptable object asset file a load button will appear as seen in Figure
6.3. Clicking this load button will add a reference to the existing asset.

Figure 6.3: The editor of a LunarisScriptableObject with both create and
load button visible.

Important: Please note that it is possible to overwrite existing files
when creating new scriptable objects with the create button. This may
course issues if it is a different type from the original type if it is referenced
from anywhere. A prompt will always appear asking before overwriting. In
this prompt it is possible to select load as well, but this will only work if the
file about to be overridden is the same type as the type it is trying to be
loaded into.

6.2 Embeding Lunaris Scriptable Objects and

Scriptable Objects

By default Lunaris’ Scriptables is able to embed all its types mentioned
in chapter 3 Lunaris’ Scriptables Types, and all types inheriting from Lu-
narisScriptableObject such as those generated by using the ScriptableObject
Generator, that is discussed how works in section 4.1 ScriptableObject Gen-
erator. It is further possible to embed all scriptable objects in a similar way
if the option is enabled in settings.

The code in listing 6.2 is used to produce the inspector in Figure 6.4.

47

Lunaris’ Scriptables Documentation

1 public class Tester : MonoBehaviour
2 {
3 [S e r i a l i z e F i e l d]
4 PlayerData playerData ;
5 [S e r i a l i z e F i e l d]
6 Vector3Var iab le vector3Val ;
7 [S e r i a l i z e F i e l d]
8 Observab l eSt r ingVar iab l e obse rvab l eS t r ingRe f ;
9 [S e r i a l i z e F i e l d]
10 StringChangeEvent stringGameEvent ;
11 [S e r i a l i z e F i e l d]
12 StringChangedEvent stringChangedGameEvent ;
13 [S e r i a l i z e F i e l d]
14 Str ingCol lect ionChangedEvent

str ingCol lect ionGameEvent ;
15 }

Listing 6.2: A code snippet which produce the editor showen in Figure 6.4.

In Figure 6.4 it can be seen how it is possible to expand and collapse each
embedded editor, and when it is expanded, the values of each reference can be
edited and is remembered for all variables. Remember that the values/data
entered in the event editors is not persistent and is lost when the object is
deselected.

48

Lunaris’ Scriptables Documentation

Figure 6.4

Important: Due to how embedded editors work in unity, having a lot of
them expanded may cause some lag or stuttering when using the inspector.

6.3 Event Listeners and Automatic Listener

Callbacks

The last major addition Lunaris’ Scriptables is the ability for event listeners
to automatically create callback methods in script which can be called by an
event.

To automatically create callbacks, first add the code from listing 6.3 to

49

Lunaris’ Scriptables Documentation

a monobehavior attached to a gameobject or a scriptableobject, or alter-
natively add an EventListenerBehavior component to a gameobject. The
example on Figure 6.5 both the code from listing 6.3 is added to a script and
a EventListenerBehavior is added to a gameobject.

1 [S e r i a l i z e F i e l d]
2 St r ingEventL i s t ene r s t r i n gL i s t e n e r ;

Listing 6.3: The code which produce the editor/inspector of the tester script
shown in Figure 6.5.

Figure 6.5: Example of an inspector with an eventlistener added to a script
and an EventListenerBehavior.

Now add an event to each event listener of a matching type. Remember
that you can use the ”Create” button to fast and automatically create the
event. You should have an event attached to the listeners and have something
similar to what can be seen in Figure 6.6.

50

Lunaris’ Scriptables Documentation

Figure 6.6: Example of an inspector with an eventlistener added to a script
and an EventListenerBehavior with events attached to them.

When the an event is attached to the game event property off an event
listener you will notice a button will appear which says ”Add Dynamic Event
Callback”. When you click this button and there is only one monobehav-
ior attached to the gameobject (besides event listener behaviors) a callback
method with the name of the event will be created in the script. Clicking the
”Add Dynamic Event Callback” button on both the String Listener and the
Event Listener in the EventListenerBehavior will generate the code in listing
6.4, and the event listeners will automatically also add these to the response
unity event list as can be seen in Figure 6.7.

1 public void StringListenerGameEvent (string args)
2 {
3 Debug . LogError (”The method ’

StringListenerGameEvent ’ i s not implemented . ”)
;

4 }
5
6 public void RandomTesterEvent (string args)
7 {
8 Debug . LogError (”The method ’RandomTesterEvent ’ i s

not implemented . ”) ;
9 }

51

Lunaris’ Scriptables Documentation

Listing 6.4: The code/methods produces from clicking the ”Add Dynmamic
Callback” button.

Figure 6.7: Example of the inspector after having clicked the ”Add Dynamic
Event Callback” for both event listeners.

Lastly if there is multiple monobehavior attached to the gameobject (be-
sides event listener behaviors) a dropdown will appear at the button with all
the monobehaviors on the object which can be seen in Figure 6.8. Choosing
a script will generate the code in listing 6.4 in the selected script or add an
existing method to the response unity event list.

52

Lunaris’ Scriptables Documentation

Figure 6.8: Example of the dropdown menu to select the script that should
have the callback method generated.

Important: Generating the callback method may take some time and
after it have been added all scripts will be reloaded/recompiled to make sure
everything was added correctly.

Important: If a method already exist with the correct name and pa-
rameters, matching the event, new code is not generated but instead that
method is used and added to the response unity event list instead.

Important: If there is currently script errors present in the project, the
output of the callback generator may cause further errors.

53

Lunaris’ Scriptables Documentation

7 Custom Code Generators

Lunaris’ Scriptables uses a code generator to generate the code and classes,
which is generated by using the tools included. It is possible to create your
own generator(s) by inheriting from the abstract class ”LunarisScriptable-
CodeGenerator” if you need to do something very specific or do not wish to
use the included generator Lunaris’ Scriptables comes with. All code gener-
ators inherits from ScriptableObject and will need to be created as an asset
and assigned to the setting ”Code Generator” which is explained in section
5.5 Code Generator.

In listing 7.1 we’ve implemented the LunarisScriptableCodeGenerator ab-
stract class with all methods so it is ready to have code added to it.

1 [CreateAssetMenu (”Code Generators /TestGenerator ”)]
2 public class TestGenerator :

Lunar i sScr iptab leCodeGenerator
3 {
4 public override void

CreateCo l l e c t i onEventL i s t ene rBehav io r s (Type type)
5 {
6 }
7
8 public override void Crea t eCo l l e c t i onEventL i s t ene r s (

Type type)
9 {
10 }
11
12 public override void CreateCollectionGameEvent (Type

type)
13 {
14 }
15
16 public override void CreateEventLis tenerBehav iors (

Type type)

54

Lunaris’ Scriptables Documentation

17 {
18 }
19
20 public override void CreateEventL i s tener s (Type type)
21 {
22 }
23
24 public override void CreateGameEvent (Type type)
25 {
26 }
27
28 public override void Crea t eS c r i p t ab l eCo l l e c t i on (Type

type)
29 {
30 }
31
32 public override void CreateScr iptableObjectType (

Scr ip tab l eObjec tCratorVa lues c r ea to rVa lue s)
33 {
34 }
35
36 public override void

Crea t eSc r i p tab l eObse rvab l eCo l l e c t i on (Type type)
37 {
38 }
39
40 public override void

CreateSc r ip tab l eObse rvab l eVar iab l e (Type type)
41 {
42 }
43
44 public override void Crea t eSc r i p tab l eVar i ab l e (Type

type)
45 {
46 }
47 }

Listing 7.1: Example of a new code without any code.

Important: The CreateGameEvent, CreateCollectionGameEvent, Cre-
ateEventListeners and CreateCollectionEventListeners must each make all
scripts for both Changing, Changed and change event as these are not di-

55

Lunaris’ Scriptables Documentation

vided into separated methods.
Important: When using the generator to create child/inherited classes

of the base Lunaris’ Scriptables’ types it is important the generator creates
code which overrides certain methods to avoid compile errors. Please refer
to the base classes to find the abstract members.

Out of the box Lunaris’ Scriptables comes with a code generator, which
class is called ”LunarisScriptableCodeDomCodeGenerator”, that is using
codedom. You can learn more about codedom here: https://docs.m
icrosoft.com/en-us/dotnet/framework/reflection-and-c
odedom/dynamic-source-code-generation-and-compilation.
This generator can be extended as well to customize the resulting scripts.

The following example will show you two ways of changing the base class
of observablevariables generated by the Lunaris’ Scriptables’ code generator.
This example will also add a field to the output classes for demonstration
purposes.

Important: All code generators using codedom elements MUST be
placed in a folder called ”Editor” to work properly.

First lets create our new base class called ”ScriptableObservableVariable-
Extended” and add the code in listing 7.2

1 public abstract class
Scr iptab leObservableVar iab leExtended<T> :
Sc r ip tab l eObservab l eVar iab l e<T>

2 {
3 [S e r i a l i z e F i e l d ()]
4 long i d ;
5
6 public long Id
7 {
8 get
9 {
10 return i d ;
11 }
12 set
13 {
14 i d = value ;
15 }
16 }
17 }

56

https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-source-code-generation-and-compilation
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-source-code-generation-and-compilation
https://docs.microsoft.com/en-us/dotnet/framework/reflection-and-codedom/dynamic-source-code-generation-and-compilation

Lunaris’ Scriptables Documentation

Listing 7.2: Example class for extending the base class
ScriptableObservableVariable.

Next we also need to create a code generator by extending the LunarisS-
criptableCodeDomCodeGenerator class, which already contains all methods
for generating code and creating the final files. In this example we call the
new generator class ”LunarisScriptableCodeDomCodeGeneratorExtended”
as seen in listing 7.3. Note that CreateAssetMenu is added such that it
can be created as a scriptable asset later.

1 [CreateAssetMenu (menuName = ”CodeGenerators /
LunarisScriptableCodeDomCodeGeneratorExtended”)]

2 public class
LunarisScriptableCodeDomCodeGeneratorExtended :
LunarisScriptableCodeDomCodeGenerator

3 {
4 }

Listing 7.3: Example of a new generator class.

Now for the first example we wanna override the method ”CreateScript-
ableObservableVariable” and change some of the generated properties of the
resulting codedom element, as well as adding out own new one. Lastly,
we use the already existing method of saving the scripts. The LunarisScript-
ableCodeDomCodeGenerator class generates all CodeCompileUnits with two
items in the ”Namespaces” property, the first one is references/usings and
the second is the object/class it self. The reason it is done this way is due
to how the final code is formatted when using codedom. If you need to add
references to the output class you will need to access it like this: ”Code-
CompileUnitVar.Namespaces[0].Imports”, and if you need to make changes
to the output object it should be accessed like this: ”CodeCompileUnit-
Var.Namespaces[1].Types” The code shown in listing 7.4 changes the base
class of and output object to the class in listing 7.2, and adds a string field
with a SerializeField attribute called ” guiId”.

1 [CreateAssetMenu (menuName = ”CodeGenerators /
LunarisScriptableCodeDomCodeGeneratorExtended”)]

2 public class
LunarisScriptableCodeDomCodeGeneratorExtended :
LunarisScriptableCodeDomCodeGenerator

3 {
4 public override void

CreateSc r ip tab l eObse rvab l eVar iab l e (Type type)

57

Lunaris’ Scriptables Documentation

5 {
6 CodeCompileUnit cu = new CodeCompileUnit () ;
7 GenerateScr ip tab l eObservab leVar iab l e (type , cu) ;
8 cu . Namespaces [1] . Types [0] . BaseTypes [0] = new

CodeTypeReference (”
Scr iptab leObservableVar iab leExtended<” + type .
Name + ”>”) ;

9 cu . Namespaces [1] . Types [0] . Members .Add(new
CodeMemberField (typeof (string) , ” guiID ”) {
CustomAttributes = new
CodeAtt r ibuteDec la ra t i onCo l l e c t i on () { new
CodeAttr ibuteDec larat ion (” S e r i a l i z e F i e l d ”) }
}) ;

10 SaveGeneratedFi le (
GenerateCodeStringFromComepileUnit (cu) ,
Luna r i s S c r i p t ab l e s S e t t i n g s . i n s t anc e .
ObservableVariablePath + ”/” +
Luna r i s S c r i p t ab l e s S e t t i n g s . i n s t anc e .
ObservableVariableNamePref ix +
CheckPrimitivesTypeName (type) +
Luna r i s S c r i p t ab l e s S e t t i n g s . i n s t anc e .
ObservableVariableNameSurf ix + ” . cs ”) ;

11 }
12 }

Listing 7.4: Example of a method which changes the base class of an
obsevable variable.

The second option is very similar, but in the LunarisScriptableCodeDom-
CodeGenerator there is also a protercted method called ”GenerateScript-
ableObservableVariable” which can be overridden. Unlike the first example
you don’t need to save the file yourself when using this method, but instead
its base first and then edit the object as shown in listing 7.5 and should
produce a identical result to the first example.

1 [CreateAssetMenu (menuName = ”CodeGenerators /
LunarisScriptableCodeDomCodeGeneratorExtended”)]

2 public class
LunarisScriptableCodeDomCodeGeneratorExtended :
LunarisScriptableCodeDomCodeGenerator

3 {
4 protected override void

58

Lunaris’ Scriptables Documentation

GenerateScr ip tab l eObservab leVar iab l e (Type type ,
CodeCompileUnit cu)

5 {
6 base . GenerateScr ip tab l eObservab leVar iab l e (type ,

cu) ;
7 cu . Namespaces [1] . Types [0] . BaseTypes [0] = new

CodeTypeReference (”
Scr iptab leObservableVar iab leExtended<” + type .
Name + ”>”) ;

8 cu . Namespaces [1] . Types [0] . Members .Add(new
CodeMemberField (typeof (string) , ” guiID ”) {
CustomAttributes = new
CodeAtt r ibuteDec la ra t i onCo l l e c t i on () { new
CodeAttr ibuteDec larat ion (” S e r i a l i z e F i e l d ”) }
}) ;

9 }
10 }

Listing 7.5: Example of a method which changes the base class of an
obsevable variable.

You should now be able to go to the Create menu in assets and see that the
a menu called CodeGenerators is now available, and inside there you should
see the ”LunarisScriptableCodeDomCodeGeneratorExtended”. Create this
object, go to settings and assign the new generator to the code generator
property field. Going to ”Lunaris Scriptables Generator” under the tab ”Lu-
naris Scriptable Generator” and generating an ObservableVariable for the
”System.String” type should now generate the code in listing 7.6

1 [CreateAssetMenu (menuName=”Lunar is S c r i p t ab l e s /
Observable Var iab l e s /Observab l eSt r ingVar iab l e ”)]

2 public class Observab leSt r ingVar iab l e :
Scr iptab leObservableVar iab leExtended<Str ing>

3 {
4 [S e r i a l i z e F i e l d ()]
5 private StringChangingEvent valueChangingGameEvent ;
6 [S e r i a l i z e F i e l d ()]
7 private StringChangedEvent valueChangedGameEvent ;
8 [S e r i a l i z e F i e l d ()]
9 private StringChangeEvent valueChangeGameEvent ;
10 [S e r i a l i z e F i e l d ()]
11 private string guiID ;

59

Lunaris’ Scriptables Documentation

12 public override BaseGameEvent<string>
ValueChangeGameEvent

13 {
14 get
15 {
16 return valueChangeGameEvent ;
17 }
18 }
19 public override BaseGameEvent<ValueChangingEventArgs

<string>> ValueChangingGameEvent
20 {
21 get
22 {
23 return valueChangingGameEvent ;
24 }
25 }
26 public override BaseGameEvent<ValueChangedEventArgs<

string>> ValueChangedGameEvent
27 {
28 get
29 {
30 return valueChangedGameEvent ;
31 }
32 }
33 }

Listing 7.6: The output code of the generator made from the code in listing
7.4 or listing 7.5.

60

Lunaris’ Scriptables Documentation

8 Future Works

Lunaris’ Scriptables have more features planned to be added in the future
and we also plan on listening closely to user feedback to provide the best
tools possible for our end-users. These features is mentioned in the following
sections.

8.1 Planning Features

� Event reference finder - a way to see all publishers/subscribers/listen-
ers/references to an event to fast have a overview.

� Missing reference finder and fixer.

� Observable UI which reflect changes to variables.

� Scriptable Coroutines - may become separate package.

� Rewrite editors using UI elements when stable.

� Odin compatibility path.

8.2 Known Issues

LTS 2020.3.X sometimes causes a warning ”Importer(NativeFormatImporter)
generated inconsistent result for asset” when creating scriptable assets from
the inspector; this is most likely some left over fixes from a bug (1317257) in
2020.3.0 which have issues with SerializedProperties after inspector refresh.

Using raw generics, eg. BaseGameEvent<T> to referencing objects will
in some versions of unity cause the object picker to either display no items
or items which is not of the correct generic type, but rather inherits from the
raw generic type. This seems to be a error in unity, and is discussed here:
https://forum.unity.com/threads/generic-scriptable-o

61

https://forum.unity.com/threads/generic-scriptable-object-fields.790763/
https://forum.unity.com/threads/generic-scriptable-object-fields.790763/

Lunaris’ Scriptables Documentation

bject-fields.790763/ and here https://issuetracker.unity
3d.com/issues/assets-are-not-listed-in-the-object-pic
ker-field-when-scriptableobject-is-generic. You can still
easily drag and drop the correct items onto the displayed property field if the
type matches. A work around is in development from unity, but only seems
compatible with unity 2022.2 and newer https://forum.unity.com/
threads/why-do-objectpickers-display-objects-of-incom
patible-type.1290533/

When using converters it is posible to crash unity with a stackoverflow if
there is a loop, that is if Converter A coverts type X to Y and then converter
A uses a converter B to convert type Y back to X. Doing this will often
result in a crash and data may be lost. If unity saves a change where the
crash persist, please use the debug inspector/editor to remove the reference
coursing issues. A work around is planned but stackoverflows can often be
hard to find viable solutions to, which also keeps the desired functionality.

Currently there’s a minor compatibility issue with odin inspector/seri-
alizer that prevents embedded editors to be drawn. You can fix this by
firstly go to ”Tool→Odin Inspector→Preferences”. A new window should
apear, in the side click ”Editor Types” and search for ”Lunaris” under the
”User Types” foldout and remove the checkmark in the field called ”Lunaris”.
Please note that the name may vary if you’ve changed the namespace of the
generated types. Secondly you can use the ”InlineEditor” attributes to draw
the editor of any Lunaris’ Scriptables.

Overwriting an existing file causes it to be unable to be deleted until an
asset database refresh. - This is done from code when overwriting but seems
to be ignored.

62

https://forum.unity.com/threads/generic-scriptable-object-fields.790763/
https://forum.unity.com/threads/generic-scriptable-object-fields.790763/
https://issuetracker.unity3d.com/issues/assets-are-not-listed-in-the-object-picker-field-when-scriptableobject-is-generic
https://issuetracker.unity3d.com/issues/assets-are-not-listed-in-the-object-picker-field-when-scriptableobject-is-generic
https://issuetracker.unity3d.com/issues/assets-are-not-listed-in-the-object-picker-field-when-scriptableobject-is-generic
https://forum.unity.com/threads/why-do-objectpickers-display-objects-of-incompatible-type.1290533/
https://forum.unity.com/threads/why-do-objectpickers-display-objects-of-incompatible-type.1290533/
https://forum.unity.com/threads/why-do-objectpickers-display-objects-of-incompatible-type.1290533/

	Overview
	Getting Started
	Specifications
	Licensing
	Installation

	Lunaris' Scriptables Types
	Variables
	Observable Variables
	Collection
	Observable Collection
	Events
	Changing Event
	Changed Event
	Change Event
	Collection Changing Event
	Collection Changed Event

	Event Listeners
	Event Listener Behaviors

	Event Arguments
	ValueChangeEventArgs
	ValueChangingEventArgs
	ValueChangedEventArgs
	CollectionChangeEventArgs
	CollectionChangingEventArgs
	CollectionChangedEventArgs

	References
	Converters
	Actions
	Functions
	Script Hooks

	Lunaris' Scriptables Code Generator
	ScriptableObject Generator
	Lunaris Scriptable Generator
	Scriptable Bulk Creator

	Settings
	Automatic Create Scriptableobjects
	Scriptable Asset Path
	Prompt before overwriting files
	Prompt before overwriting for all files
	Code Generator
	Embed Lunaris Scriptables in Inspector
	Embed ScriptableObjects in Inspector
	Show Create/Load on Lunaris Scriptables
	Show Create/Load on ScriptableObjects
	Only Show LunarisScriptableObjects in Bulk Creator
	Use Filters for Bulk Creator
	Use Lunaris' Object Picker for abstract/generic scriptables
	Automatically create scriptable on single match
	Curly Bracket Style
	Indent Style
	Indent Amount
	Generator Settings
	Paths
	Namespaces
	Prefixes
	Surfixes
	Asset Menu Path
	Component Menu Path

	Edtitor Extensions
	Create and Load Button for Lunaris Scriptable Objects
	Embeding Lunaris Scriptable Objects and Scriptable Objects
	Event Listeners and Automatic Listener Callbacks

	Custom Code Generators
	Future Works
	Planning Features
	Known Issues

